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Abstract

Structured Neighbourhood Search (SNS) is a
framework for constraint-based local search for
problems expressed in the ESSENCE abstract con-
straint specification language. The local search
explores a structured neighbourhood, where each
state in the neighbourhood preserves a high level
structural feature of the problem. SNS derives
highly structured problem-specific neighbourhoods
automatically and directly from the features of
the ESSENCE specification of the problem. Hence,
neighbourhoods can represent important structural
features of the problem, such as partitions of sets,
even if that structure is obscured in the low-level in-
put format required by a constraint solver. SNS ex-
presses each neighbourhood as a constrained opti-
misation problem, which is solved with a constraint
solver. We have implemented SNS, together with
automatic generation of neighbourhoods for high
level structures, and report high quality results for
several optimisation problems.

1 Introduction
Constraint Programming (CP) offers an efficient means of
solving complex constrained optimisation problems. A sys-
tematic search through the space of partial assignments may
be employed to achieve this. In local search methods [Hoos
and Stützle, 2004], a complete assignment is iteratively mod-
ified in an effort to reach a satisfying or optimal solution. At
each iteration a modification is selected from a neighbour-
hood of available candidates. Local search sacrifices com-
pleteness for the ability to explore neighbourhoods rapidly.

Constraint-based local search (CBLS) [Codognet and Diaz,
2001; Van Hentenryck and Michel, 2005] has applied local
search to CP. Neighbourhoods are specified by the user as part
of the model, or generated from the constraints and variables
in the model [Benoist et al., 2011; Björdal et al., 2015]. A
potential weakness of this approach is that a constraint model
typically represents the abstract structure of a given problem
as a collection of primitive variables and constraints. Focus-
ing on variables and constraints individually may produce
weaker neighbourhoods than if the original problem struc-
ture were apparent. This observation motivates our work: by

allowing neighbourhoods to exploit the original problem’s
combinatorial structure, we expect local search to attain bet-
ter performance than when problem structure is not available.

The technique of Large Neighbourhood Search (LNS)
originated in the constraint community [Shaw, 1998], where it
has been further refined to exploit propagation [Perron et al.,
2004] and explanations [Prud’homme et al., 2014]. There are
also customisable and hybrid LNS approaches [Rendl et al.,
2015; Cipriano et al., 2013]. Pesant and Gendreou extended
LNS to support meaningful neighbourhoods (e.g. exchang-
ing two cities in the Travelling Salesperson Problem) [1999].
The advance we present here is that SNS is able to automati-
cally generate neighbourhoods from a high level specification
which are semantically meaningful in the original problem.

For high level problem expression we use the ESSENCE

constraint specification language [Frisch et al., 2005; 2007;
2008]. Space precludes a detailed presentation, but Fig. 1
shows an illustrative specification of the capacitated vehicle
routing problem (CVRP). An ESSENCE specification iden-
tifies: the input parameters of the problem class (given),
whose values define an instance; the combinatorial objects
to be found (find); the constraints the objects must sat-
isfy (such that); identifiers declared (letting); and an
(optional) objective function (min/maximising). Here, the
combinatorial object to be found is represented by a single
abstract variable whose type is set of sequence of int.
This is a considerably higher level of description than pre-
vious work on CBLS described as working from high-level
models [Van Hentenryck and Michel, 2007]. Ågren et al. ex-
tend local search to support sets of integers directly [2009].
We improve over this by supporting arbitrarily nested types.
Furthermore, we avoid having to add explicit support for
these types to the underlying constraint solver.

ESSENCE is situated at the top of a constraint mod-
elling pipeline, which automatically models and solves an
ESSENCE specification. The CONJURE automated modelling
system [Akgün et al., 2011; 2013] employs refinement
rules to convert an ESSENCE specification into a lower-
level but generic language ESSENCE PRIME [Rendl, 2010].
This model is automatically prepared for a given constraint
solver while performing solver-specific model optimisations
by SAVILE ROW [Nightingale et al., 2014; 2015; 2017].

By using ESSENCE as the starting point we can exploit
the structure in ESSENCE specifications, avoiding the diffi-



language Essence 1.3
$ Simple version of capacitated vehicle routing problem
$ Goods are shipped from one depot to drop off locations
$ One order per drop off location, one trip per vehicle
given N : int $ Number of locations
letting L0 be domain int(0..N) $ Depot is 0
letting L1 be domain int(1..N)
given weights : function (total) L1 --> int(1..)
given costs : function (total) tuple (L0,L0) --> int(0..)
given vehicleCapacity : int $ All have same limit

letting totalW be sum([weight | (_,weight) <- weights])
letting minVehicles be totalW / vehicleCapacity

+ toInt(totalW % vehicleCapacity != 0)

find plan : set (minSize minVehicles, maxSize N)
of sequence (maxSize N, injective, minSize 1)
of L1

$ Worst-case: separate vehicle out and back for each item
find optVar : int( 0 .. sum([costs((0, i)) | i : L1])*2 )
such that optVar = sum route in plan . (

sum([ costs(tuple(route(i-1), route(i)))
| i : int(2..N), i <= |route| ])

+ costs((0, route(1))) $ from depot to first location
+ costs((route(|route|), 0)) ) $ ...and back from last

minimising optVar

$ Capacity restriction, every order delivered
such that forAll route in plan . vehicleCapacity >=

(sum (_,order) in route . weights(order))
such that forAll order : L1 . 1 =

sum([toInt(order = loc) | route<-plan, (_,loc)<-route])

Figure 1: Capacitated vehicle routing in ESSENCE

cult task of identifying that structure in an equivalent con-
straint model. Neighbourhoods are automatically generated
as constraint problems describing transformations of mem-
bers of ESSENCE domains via a library of domain specific
operations that encapsulate expert knowledge. The resulting
method, which we call Structured Neighbourhood Search, re-
tains the advantages of specifying problems in ESSENCE —
concision, abstraction from modelling details and blackbox
search — while actually improving the quality of the neigh-
bourhoods we can generate for constraint-based local search.

2 An Overview of SNS

To help the reader follow our exposition we start with a high-
level overview of Structured Neighbourhood Search. The key
point is that the use of ESSENCE allows neighbourhoods ex-
plored by the low-level search to be semantically meaning-
ful in the high-level specification of the problem. For exam-
ple, in a problem concerning sets, SNS can ensure that con-
secutive states in the local search represent valid sets, even
using a low-level solver which is not aware of the structure
of sets. To achieve this, CONJURE analyses a specification
and automatically generates semantically meaningful neigh-
bourhoods (Sec. 3). The pipeline then refines these neigh-
bourhoods so that they can be used by the SNS solver. The
SNS solver (Sec. 4) then performs a relatively standard local
search, selecting appropriate neighbourhoods automatically
using a multi-armed bandit algorithm (Sec. 4.4). Within each
neighbourhood, a complete constraint solver is used to ensure
that the structural constraints defining the neighbourhood are
obeyed. As a result, SNS combines the large neighbourhoods
of LNS, the high-level semantic structure (without the need

for a specially-written search procedure), and the efficiency
of modern constraint solvers at the low-level.

3 Automatic Neighbourhood Generation
To date, our pipeline has targeted systematic constraint and
SAT solvers as output [Nightingale et al., 2017]. In this pa-
per we describe modifications to the pipeline to support SNS.
Our main contribution is that for each abstract decision vari-
able in the original specification, a set of neighbourhoods is
generated automatically according to a set of neighbourhood
generation rules. The strength of these neighbourhoods is that
they encode powerful operations derived from the structure of
the abstract variable, which provide strong guidance for the
SNS search process. These neighbourhoods would be both
difficult and costly to generate from the equivalent collection
of primitive variables and constraints if a constraint model
were the starting point because the abstract structure (e.g. a
sequence, set or function) would have to be recognised.

The CVRP specification in Fig. 1 uses a single abstract
variable plan, modelled as a set of sequence of int.
Neighbourhoods we generate for this variable include: add
or remove sequences to/from the set; select a sequence from
the set and reverse a contiguous subsequence; select two se-
quences s1 and s2 and for a range of indices, swap the values
contained by s1 at those indices with the values contained by
s2 at the same indices. This example illustrates the advantage
of SNS: the set of sequence of int type is explicit in
the ESSENCE specification, and can be exploited to automat-
ically generate high quality neighbourhoods.

A neighbourhood specification extends the original
ESSENCE specification of a problem with additional abstract
variables and constraints to express each of the neighbour-
hoods to be explored for this problem. Each such neighbour-
hood is generated automatically by CONJURE. We illustrate
this process by means of a concrete example, focusing on
the variable type set of sequence of int and the neigh-
bourhood mentioned above: select a sequence from the set
and reverse a contiguous subsequence.

We refer to the abstract variables in the original ESSENCE

specification as primary variables. Each neighbourhood is
expressed as a set of constraints relating these primary vari-
ables to an active solution, which is a feasible solution to
the problem. The first step in neighbourhood generation is
for each primary variable to introduce a corresponding active
variable to store the currently active solution. For the exam-
ple given in Fig. 1, CONJURE introduces a new active variable
active plan corresponding to the primary variable plan:

find active_plan : set (minSize minVehicles, maxSize N)
of sequence (maxSize N, injective, minSize 1)
of L1

The next step is to add variables local to each neighbour-
hood. All neighbourhoods have an associated size variable,
which control the size of the neighbourhood explored. Further
variables may be introduced to control other such parameters.
In our example, an additional variable is introduced to indi-
cate the starting index of the subsequence to be reversed:

find revSubSize : int(1..N)
find subStart : int(1..N)



The final step is to express each neighbourhood by adding
constraints between primary and active variables. In our ex-
ample below, CONJURE adds constraints to the specification
constraining the value of the primary variable plan to be the
same as that held by active plan except that one of the se-
quences in plan must have a contiguous portion reversed.

$ select a primary sequence
exists s_p in plan .

$ select a sequence in the active solution
exists s_a in active_plan .
$ Enforce subsequence indices are in range
subStart + revSubSize <= |s_a|,
$ reverse the selected subsequence
forAll i : int(0..N) .
i <= revSubSize ->
s_p(subStart + i) = s_a((subStart + revSubSize) - i)

$ Regions outside subsequence are equal to active sol
|s_a| = |s_p|,
forAll i : int(1..N) .
(i <= |s_a| /\
(i < subStart \/ i > subStart + revSubSize)) ->
s_p(i) = s_a(i)

$ Ensure all other sequences are unchanged
plan = active_plan - s_a + s_p,

There are typically a variety of neighbourhoods in each
neighbourhood specification. In order that the SNS search
process can choose which to employ at any particular time,
each is enabled with a Boolean activator variable.

3.1 Neighbourhood Generation Rules

Our neighbourhood generation rules are driven by the high-
level nested structure of ESSENCE types. Direct rules (Ta-
ble 1) are concerned solely with the outer structure of an
ESSENCE decision variable. For instance, we might wish
to reverse a contiguous subsequence of a sequence of τ ,
where τ is any ESSENCE type. Lifted rules are parameterised
by other neighbourhood generation rules. They allow us to
reach inside a containing abstract structure and apply other
rules to manipulate individual parts of that structure. This was
illustrated in our example, where we selected and reversed a
subsequence of a single sequence from a set of sequences.

Lifted rules can themselves be lifted, allowing us to gener-
ate a large variety of neighbourhoods by composing a small
number of neighbourhood generation rules in multiple ways.

Powerful neighbourhoods can be constructed to make mul-
tiple simultaneous changes, which must be coordinated so
that the modifications made are valid. For example, given
a set of sequences we may wish to exchange elements be-
tween sequences, hence modifying the value of two se-
quences within the set simultaneously. These Synchronised
rules (Table 2) can both operate directly or be lifted.

4 Structured Neighbourhood Search

The process described in the previous section generates a
neighbourhood specification, which is automatically refined
by CONJURE into a constraint model in ESSENCE PRIME.
ESSENCE PRIME is a solver-independent constraint mod-
elling language offering features similar to those of Mini-
Zinc [Nethercote et al., 2007] or OPL [Van Hentenryck et
al., 1999], with support for Boolean and integer decision
variables together with arithmetic, logical and global con-
straints. This model is annotated by CONJURE to indicate the

set (and multiset)

Remove s elements from set.
Add s elements to set.
Exchange s elements for values not currently in set.
ExchangeOrRemove a total of s elements from set.
ExchangeOrAdd a total of s elements to set.

sequence

Reverse contiguous subsequence of length s.
Exchange the positions of s elements with another s.
Relax domains of contiguous subsequence, length s.
CycleL/R elements of a sequence s positions left/right.
RemoveE/S s elements from the end/start of a sequence.
AddE/S s elements to the end/start of a sequence.

function

Define values for s more elements of the function domain.
UnDefine values for s elements of the function domain.
Injective- Select 2s elements from the image of a function:

reduce to s elements by constraining pairs of elements
in the preimage to be equal.

Injective+ Select s elements from the image of a function:
increase to 2s elements by constraining pairs of elements
in the preimage to be distinct.

Permute the images of s inputs to the function.

Table 1: Direct neighbourhood generations rules for size s. Each of
these can be Lifted to operate on nested types.

set (and multiset)

Move s elements from one set to another.
Exchange s elements between two sets.
Merge a set with another set of size s.
Split s elements from a set to create a new set.

sequence

Concatenate one sequence with another.
Exchange s elements between two sequences.
Split s elements from a sequence to create a new sequence.
CrossOver Exchange s contiguous elements between

two sequences at the same indices.
Move Remove s elements from the end of a sequence; add

those elements to the start or end of another sequence.

function

CrossOver Exchange s elements from the image of one
function with s elements from the image of another.

Table 2: Synchronised neighbourhood generation rules for size s.
These rules can be used directly on a single variable or can be lifted
to operate on parts of an abstract structure.

parts corresponding to each neighbourhood then processed by
SAVILE ROW into input suitable for the SNS solver.



Algorithm 1 SNS()

$ ι: the incumbent (best solution found so far)
ι← SNS-Improve(SNS-FindRandSoln())
$ Each neighbourhood has an associated size
s← 1
while true do

for n ∈ neighbourhoods in random order do
Set size of n to s
σ ← SNS-Neighbourhood-Search(ι, n,Explore)
σ ← SNS-Improve(σ)
if σ improves upon ι then

s← 1, ι← σ
Continue while loop

if 2 ∗ s ≤ maximum neighbourhood size then
s← 2 ∗ s

else
repeat

σ ← SNS-Improve(SNS-FindRandSoln())
until σ improves upon ι
s← 1, ι← σ

return ι on timeout

4.1 The SNS Search Procedure

Algorithm 1 summarises the SNS search procedure. The first
step is to find a random feasible solution (§4.2). The random
feasible solution is improved by applying SNS-Improve() and
it becomes the first incumbent solution ι. The variable s rep-
resents the neighbourhood size used for diversification, and
s = 1 initially. The first part of the main loop picks a neigh-
bourhood and applies it to ι (with size s) to move away from
ι, creating a new active solution σ that may be worse than ι.
SNS-Improve() is applied to improve σ. If the result is better
than ι it is accepted as the new incumbent, and s is reset to 1.

In the case where the set of neighbourhoods is exhausted,
s is increased and each neighbourhood is applied again. The
diversification process is repeated until s cannot be increased
further. Finally, the algorithm will generate new random fea-
sible solutions (unrelated to ι), apply SNS-Improve() to each
one, and accept the first that improves on ι. In the following
subsections we describe the constituent parts of the algorithm.

4.2 Finding Random Feasible Solutions

At two points SNS() requires the production of random feasi-
ble solutions (function SNS-FindRandSoln()): to find the ini-
tial incumbent and to escape local optima when the maximum
neighbourhood size has been reached. For this purpose, we
employ the MINION constraint solver [Gent et al., 2006] with
the dom/wdeg variable ordering [Boussemart et al., 2004],
a random value ordering and random restarts, beginning at
100ms and increasing by a multiple of 1.5 each iteration.

4.3 Finding Improved Solutions

Algorithm 2 SNS-Improve() is called with a feasible solution
σ, the active solution. We select a neighbourhood (§4.4) and
run the neighbourhood search procedure (§4.5) in optimisa-
tion mode. If a solution σ′ that is at least as good as σ is
found, σ′ is made the new active solution and the process is
repeated. If no σ′ of sufficient quality is found within a given

Algorithm 2 SNS-Improve(Active solution σ)

peakThreshold← α
increment← β× 1

number of neighbourhoods

while RandomValueIn({0 . . . 1}) ≥ peakThreshold do
n← SNS-Select-Neighbourhood()
σ′ ← SNS-Neighbourhood-Search(σ, n,Optimise)
if σ′ is not worse than σ then

peakThreshold← α
σ ← σ′

else
peakThreshold← peakThreshold + increment

return σ

timeout, we add an increment to the peakThreshold, which is
used to decide probabilistically if we have reached a local op-
timum. In this paper we set α to 0.001 and β to 1

16
. Future

work will explore tuning these parameters.

4.4 Neighbourhood Selection

The SNS-Select-Neighbourhood() procedure (called from Al-
gorithm 2) is used to find the most promising neighbourhood
at any point during search. For a given problem there may be
many generated neighbourhoods for which we have no prior
knowledge of their reward distributions, determined by how
much the application of each neighbourhood improves the ob-
jective. As we have no prior knowledge of the suitabilities
of particular neighbourhoods to a particular problem class,
during search we have to carefully balance the time taken ex-
ploring and identifying a neighbourhood’s performance while
exploiting those that allow us to rapidly improve. Represent-
ing this as a multi-armed bandit problem allows us to employ
well known regret minimising algorithms to deal with the ex-
ploration/exploitation dilemma. This can be seen as a form of
‘Adaptive LNS’ [Ropke and Pisinger, 2006].

The multi-armed bandit can be seen as a set of real distribu-
tions, each distribution being associated with the rewards de-
livered by one of the K levers. In our case this is the K gener-
ated neighbourhoods. On each iteration of SNS-Improve() one
neighbourhood is selected to locally search the problem space
and a reward is observed based upon the improvement to the
active solution. Our aim is at each iteration to apply the opti-
mal neighbourhood, where optimality is defined as producing
the largest increase in the value of the objective. The regret ρ
after T rounds is defined as the expected difference between
the reward sum associated with an optimal strategy and the
sum of the collected rewards observed. The UCB1 [Auer et
al., 2002] algorithm was chosen to solve the multi-armed ban-
dit problem as first and foremost its regret grows logarithmi-
cally in line with the number of actions taken. For each neigh-
bourhood k we record the average reward xk and the number
of times k has been tried in the search procedure nj out of
a total of n iterations. On each iteration a neighbourhood is
chosen that maximises xj +

√

2 log(n)/nj .
In our system the reward distributions for a neighbourhood

are not fixed, so this is not a Stationary Multi-Armed Ban-
dit problem. However, if a neighbourhood performs well, we
expect it will continue performing well during search even
if there is a slight variation in the mean reward. We have



found that using UCB1 gives good results. Future work could
investigate the use of Upper Confidence Bound policies for
non-stationary bandit problems, such as the family of Exp3
algorithms [Kocsis and Szepesvári, 2006; Munos, 2014].

4.5 Neighbourhood Search

SNS-Neighbourhood-Search(σ, n, Mode) is responsible for
searching the neighbourhood n of the active solution σ. It
can be run in two Modes. The first (Explore) accepts the first
solution of any objective value. This is used by SNS() in Al-
gorithm 1. The second mode (Optimise, employed by SNS-
Improve()) treats the neighbourhood as a constrained optimi-
sation problem, accepting only those solutions with an ob-
jective value at least as good as that of the active solution
σ. Once Optimise finds a solution, it will continue to search
for a solution with better objective value, until the time limit
of 500ms is reached. In preliminary experiments we found a
time limit more effective than a search node limit as the latter
penalises simple neighbourhoods that have high node rates.

Neighbourhood search is performed using the systematic
MINION solver in a carefully controlled manner. The annota-
tions supplied by CONJURE are used to identify the primary
and active variables involved in neighbourhood n. The pri-
mary variables are unassigned preparatory to search, and the
activator variable for neighbourhood n is set to true, remov-
ing the guard on the neighbourhood constraints.

We construct a variable ordering as follows. First is the
neighbourhood size variable for n, which is given an ascend-
ing value ordering. This forces the exploration to begin close
to the current active solution σ before systematically expand-
ing out. Next are placed the variables that control the neigh-
bourhood parameters, e.g. subStart in our example. A random
value ordering is used so that different portions of the neigh-
bourhood are searched on each activation. Finally come the
primary variables upon which the neighbourhood is operat-
ing, that is the representation of a partition, set, sequence, etc.
These variables are searched using a dom/wdeg ordering with
the aim of finding solutions as quickly as possible once the
neighbourhood parameters have been chosen.

5 Experimental Evaluation

Our hypothesis is that the structure in abstract ESSENCE spec-
ifications can be exploited to automatically generate effec-
tive neighbourhoods for constraint-based local search. The
most natural comparison is with methods that generate neigh-
bourhoods from the constraint model. Therefore we com-
pare SNS with OscaR/CBLS [Björdal et al., 2015], a mod-
ern implementation of CBLS, propagation-guided LNS (LNS
PG) [Perron et al., 2004], and explanation-based LNS (LNS
EB) [Prud’homme et al., 2014] (which are automatic large
neighbourhood search algorithms). LocalSolver [Benoist et
al., 2011] is another possible point of comparison, but this
commercial solver incorporates a complex mix of technolo-
gies that make it unsuitable to test our hypothesis. We use
Chuffed (via its free search option), a systematic lazy clause
generation solver [Chu, 2016], as a performance baseline.

We compare SNS to the other solvers on 5 problem classes:
Capacitated Vehicle-Routing Problem (CVRP); Progressive

Party Problem (PPP, CSPLib 13); Minimum Energy Broad-
cast (MEB, CSPLib 48); SONET (CSPLib 56); Rack Config-
uration Problem (RackConf, CSPLib 31).

For SNS, each problem class and a set of instances is spec-
ified in ESSENCE. An extended version of CONJURE is ap-
plied once per problem class to generate a model in ESSENCE

PRIME with SNS neighbourhoods. An extended version of
SAVILE ROW [Nightingale et al., 2017] is applied for each in-
stance to instantiate the model and specialise it in two ways:
SNS (including neighbourhoods) and MiniZinc (with neigh-
bourhoods removed). The MiniZinc instance is then spe-
cialised via MiniZinc 2.1.7 for OscaR/CBLS and Chuffed.

For the LNS methods, each problem class was imple-
mented in Choco 4.0.6, with great care taken to match the
ESSENCE PRIME model as closely as possible. For the search
within each LNS neighbourhood we use dom/wdeg variable
ordering [Boussemart et al., 2004], ascending value ordering
and a limit of 50 backtracks (a value found to be good in pre-
liminary experiments). To find the first solution we replicate
the method in §4.2 in Choco, except that the time limit is ini-
tially 1 second rather than 100 ms.

SNS, OscaR/CBLS and the LNS methods are randomised
while Chuffed is deterministic. For each solver and instance
we perform 10 runs each with a 10 minute time limit. Experi-
ments were run on an Intel Xeon E5-2640 v4 at 2.40GHz with
20 cores (40 hyper-threads) with 20 processes run in parallel.

Table 3 summarises our results. SNS is extremely effective:
this is indicated by the proliferation of ‘1’ entries in the first
column of SNS results, indicating that SNS found the best
results (or tied) of any competing solver on those instances.
Also, SNS was the only solver to successfully find a solution
in every run (indicated by the absence of ∞’s in the second
column). The two LNS variants are also effective, but SNS is
more effective overall. SNS outperforms the LNS variants on
all CVRP and SONET instances. On mean best score found,
for CVRP the wins are by 6.7% (EB) and 19% (PG), while for
SONET the wins are by 10% (EB) and 0.2% (PG). On PPP,
SNS is 0.4% better than LNS EB, and 3.4% worse than LNS
PG. On the MEB instances, SNS is 2.7% worse than LNS EB,
and 4.5% better than LNS PG. Both LNS variants outperform
SNS on the RackConf instances, although by only 0.2%.

The problem with the most structure in the variables,
CVRP, is one where SNS performs particularly well. CVRP
is specified with a single decision variable, but it has a nested
type: a set of sequences of integers. SNS generates both lifted
and direct neighbourhoods of sequences and it substantially
outperforms all other solvers. Our results bear out our hypoth-
esis: specifications can be exploited to automatically generate
effective neighbourhoods for constraint-based local search.

6 Conclusion and Further Work

Structured Neighbourhood Search (SNS) exploits abstract
structure in constraint specifications automatically to con-
struct neighbourhoods that reflect that structure, and then per-
forms local search. Our implementation outperforms vari-
ants of Large Neighbourhood Search (LNS) and Constraint-
based Local Search (CBLS), especially on instances with
complex abstract structure. This is particularly notable given



Instance opt SNS OscaR/CBLS Chuffed LNS EB LNS PG

CVRP-1 290 1 1.002 1.048 1.166 1.021 1.021 1 1.001 1 1
CVRP-2 375 1 1.025 1.808 ∞ 2.216 2.216 1.101 1.147 1.104 1.255
CVRP-3 569 1 1.077 2.058 ∞ 2.162 2.162 1.104 1.181 1.336 1.434
CVRP-4 529 1 1.179 ∞ ∞ 3.837 ∞ 1.129 1.34 1.499 1.683
CVRP-5 114 1 1 1 1 1 1 1 1 1 1

PPP-1 13 1 1.054 ∞ ∞ 1 1.008 1 1.054 1 1.038
PPP-2 12 1.167 1.258 ∞ ∞ 1 1 1.167 1.25 1.083 1.225
PPP-3 12 1.167 1.225 ∞ ∞ 1.25 1.25 1.167 1.233 1 1.183
PPP-4 13 1 1.1 ∞ ∞ 1.077 1.077 1.077 1.146 1.077 1.177
PPP-5 14 1 1.064 ∞ ∞ 1 1 1 1.029 1 1.036
PPP-6 13 1.077 1.123 ∞ ∞ 1.077 1.077 1.077 1.108 1 1.131
PPP-7 13 1 1.115 ∞ ∞ 1 1 1.077 1.162 1.077 1.085
PPP-8 13 1 1.092 ∞ ∞ 1.077 1.077 1 1.108 1 1.092
PPP-9 13 1.077 1.131 ∞ ∞ 1 1 1.077 1.162 1 1.092

MEB-01 202 1 1 1 1.121 2.98 3.05 1 1 1 1
MEB-02 205 1 1.16 1.634 2.391 5.868 5.868 1 1.001 1 1.032
MEB-03 328 1 1 1 1.005 1 1 1 1 1 1
MEB-04 160 1 1 1.456 1.501 1 1 1 1 1 1
MEB-05 52 1.423 1.869 2.038 ∞ 6.808 6.808 1 1.396 1.538 1.998
MEB-06 206 1 1 1.005 1.013 2.51 2.552 1 1 1 1.001
MEB-07 542 1 1.076 1.083 1.607 2.616 2.616 1.017 1.05 1.015 1.06
MEB-08 581 1 1.039 1.093 1.308 3.036 3.146 1 1.019 1.048 1.102
MEB-09 344 1 1.251 1.23 1.368 2.712 2.712 1.067 1.151 1.067 1.414
MEB-10 397 1 1.021 1.06 1.597 2.499 2.499 1 1.008 1 1.012
MEB-11 466 1 1.088 1.182 1.223 2.622 2.681 1.036 1.134 1.137 1.182
MEB-12 264 1.057 1.203 1.455 1.659 6.242 6.245 1 1.297 1.277 1.596
MEB-13 435 1 1.087 1.039 1.147 1.766 1.766 1 1 1 1.054

SONET-1 59 1 1.027 1.068 1.224 3.407 3.414 1.051 1.093 1.136 1.269
SONET-2 115 1 1.058 1.13 1.421 6.417 6.417 1.07 1.233 1.009 1.067
SONET-3 89 1 1.035 1.112 1.307 4.551 4.551 1.112 1.175 1.022 1.093
SONET-4 122 1 1.089 1.082 1.234 5.549 5.557 1.213 1.287 1.074 1.136
SONET-5 167 1 1.169 1.054 1.314 5.491 5.491 1.18 1.283 1.024 1.066
SONET-6 172 1 1.181 1.052 1.324 5.122 5.122 1.215 1.392 1.029 1.117
SONET-7 211 1.19 1.49 1 1.305 5.744 5.744 1.341 ∞ 1.142 ∞

SONET-8 195 1.292 1.525 1 1.276 7.959 7.959 1.19 ∞ 1.056 ∞

RackConf-01 550 1 1 1 1 1 1 1 1 1 1
RackConf-02 1100 1 1 1.091 1.259 1 1 1 1 1 1
RackConf-03 1200 1 1 1.583 1.725 1 1 1 1 1 1
RackConf-04 1150 1 1 1.043 1.061 1 1 1 1 1 1
RackConf-05 987 1.001 1.002 1.048 1.074 1.02 1.02 1 1.001 1.001 1.001
RackConf-06 624 1 1.017 ∞ ∞ 1 1 1 1.004 1 1
RackConf-07 664 1.011 1.016 ∞ ∞ 1.018 1.018 1 1.006 1 1
RackConf-08 711 1.003 1.015 ∞ ∞ 1.025 1.025 1 1.005 1 1
RackConf-09 753 1.005 1.009 ∞ ∞ 1.04 1.041 1 1.005 1 1
RackConf-10 783 1.005 1.018 ∞ ∞ 1.033 1.033 1 1.019 1 1.003
RackConf-11 584 1 1.003 1.082 1.12 1.051 1.052 1 1.014 1 1.002

Table 3: Column opt lists the best value found by any solver. For each algorithm, the first column gives the ratio of the best value found to opt
(lower is better with 1 best possible); ∞ indicates that no run yielded a solution. The second column gives the ratio of the mean of the best
values found at the end of each run to opt (lower is better); ∞ indicates at least one run during which no solution was found.

the automatic generation of neighbourhoods from a very high
level specification of a constraint problem. Future research
includes optimising SNS parameters, or investigating more
efficient exploration of the automatically constructed neigh-
bourhoods.
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